Current

Current is a flow of electrical charge carriers, usually electrons or electron-deficient atoms. The common symbol for current is the uppercase letter I. The standard unit is the ampere, symbolized by A.

Physicists consider current to flow from relatively positive points to relatively negative points; this is called conventional current or Franklin current. Electrons, the most common charge carriers, are negatively charged. They flow from relatively negative points to relatively positive points.

Electric current can be either direct or alternating. Direct current (DC) flows in the same direction at all points in time, although the instantaneous magnitude of the current might vary. In an alternating current (AC), the flow of charge carriers reverses direction periodically. The number of complete AC cycles per second is the frequency, which is measured in hertz. An example of pure DC is the current produced by an electrochemical cell. The output of a power-supply rectifier, prior to filtering, is an example of pulsating DC. The output of common utility outlets is AC.

Current per unit cross-sectional area is known as current density. It is expressed in amperes per square meter, amperes per square centimeter, or amperes per square millimeter. Current density can also be expressed in amperes per circular mil. In general, the greater the current in a conductor, the higher the current density. However, in some situations, current density varies in different parts of an electrical conductor. A classic example is the so-called skin effect, in which current density is high near the outer surface of a conductor, and low near the center. This effect occurs with alternating currents at high frequencies. Another example is the current inside an active electronic component such as a field-effect transistor (FET).

An electric current always produces a magnetic field. The stronger the current, the more intense the magnetic field. A pulsating DC, or an AC, characteristically produces an electromagnetic field. This is the principle by which wireless signal propagation occurs.

 

Separator image